High-threshold, Kv3-like potassium currents in magnocellular neurosecretory neurons and their role in spike repolarization.

نویسندگان

  • Talent Shevchenko
  • Ryoichi Teruyama
  • William E Armstrong
چکیده

We identified Kv3-like high-threshold K+ currents in hypothalamic supraoptic neurons using whole cell recordings in hypothalamic slices and in acutely dissociated neurons. Tetraethylammonium (TEA)-sensitive currents (< 1 mM TEA) evoked from -50 mV were characterized by a large component that inactivated in 10-30 ms, and a smaller, persistent component that inactivated in 1-2 s. I/V relations in dissociated neurons revealed TEA-subtracted currents with a slope and voltage dependency consistent with the presence of Kv3-like channels. In slices, tests with 0.01-0.7 mM TEA produced an IC50 of 200-300 nM for both fast and persistent currents. The fast transient current was similar to currents associated with the expression of Kv3.4 subunits, given that it was sensitive to BDS-I (100 nM). The persistent TEA-sensitive current appeared similar to those attributed to Kv3.1/3.2 subunits. Although qualitatively similar, oxytocin (OT) and vasopressin (VP) neurons in slices differed in the stronger presence of persistent current in VP neurons. In both cell types, the IC50 for TEA-induced spike broadening was similar to that observed for current suppression in voltage clamp. However, TEA had a greater effect on the spike width of VP neurons than of OT neurons. Immunochemical studies revealed a stronger expression of the Kv3.1b alpha-subunit in VP neurons, which may be related to the greater importance of this current type in VP spike repolarization. Because OT and VP neurons are not considered fast firing, but do exhibit frequency- and calcium-dependent spike broadening, Kv3-like currents may be important for maintaining spike width and calcium influx within acceptable limits during repetitive firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing.

Analysis of the Kv3 subfamily of K(+) channel subunits has lead to the discovery of a new class of neuronal voltage-gated K(+) channels characterized by positively shifted voltage dependencies and very fast deactivation rates. These properties are adaptations that allow these channels to produce currents that can specifically enable fast repolarization of action potentials without compromising ...

متن کامل

Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability ...

متن کامل

Kv3.1 uses a timely resurgent K+ current to secure action potential repolarization

High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, pr...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 5  شماره 

صفحات  -

تاریخ انتشار 2004